From Futuragora Wiki
Jump to navigationJump to search

Project: Opensenses Pi

Este projecto é a versão dois do projecto bio-rio, melhorada para um rasberry pi Model 2 B. Controla o aquário e executa tarefas e calculo para os sistema da futuragora. Está inserido na VPN da Futuragora sendo apenas acessível dentro dessa rede. Está ligado a vários sensores que recolhem dados entre eles a temperatura do aquário e a exterior, a luminosidade e outros dados. Também, através de um módulo de 4 relés o raspberry pi controla rotinas na bomba de ar, filtro e luzes que desligam e ligam autmoaticamente. Por fim, uma ultima rotina que liga as luzes também liga a câmara e posteriormente recolhe um video de 3 segundos. Esse video é posteriormente enviado para o servidor que cria uma cápia diária.

Página de controle: https://futuragora.pt/futurai/opensenses/pi

Tecnologias e componentes:

- Raspberry Pi - Relay Board for arduino DFRobot - Pen wifi - InfraRed

GPI in use:

GPIO 17 - Infra red GPIO 23 - Infra red

Mapa do GPIO: https://developer-blog.net/wp-content/uploads/2013/09/raspberry-pi-rev2-gpio-pinout.jpg


apt-get update

apt-get install -y openvpn whois screen

apt-get install build-essential python-dev python-openssl git

apt-get install python-setuptools

nano /etc/hostname

nano /etc/hosts

Mount USB

Para montar uma pen usb no rpi1:

mkdir /mnt/usb
mount -t ntfs-3g /dev/sda1 /mnt/usb


Re1 - 220v

Re2 - Light

re3 - 12v

Control gpio pin with bash:

# Set up GPIO 23 and set to input
echo "23" > /sys/class/gpio/export
echo "out" > /sys/class/gpio/gpio23/direction
echo "24" > /sys/class/gpio/export
echo "out" > /sys/class/gpio/gpio24/direction
# Write output
echo "1" > /sys/class/gpio/gpio23/value
echo "1" > /sys/class/gpio/gpio24/value

Control with python:

sudo python
import RPi.GPIO as GPIO
GPIO.setup(22, GPIO.OUT)
GPIO.setup(25, GPIO.OUT)
GPIO.output(22, True)
GPIO.output(25, False)
import RPi.GPIO as GPIO
# to use Raspberry Pi board pin numbers
# set up the GPIO channels - one input and one output
GPIO.setup(11, GPIO.IN)
GPIO.setup(12, GPIO.OUT)
# input from pin 11
input_value = GPIO.input(11)
# output to pin 12
GPIO.output(12, GPIO.HIGH)
# the same script as above but using BCM GPIO 00..nn numbers
GPIO.setup(17, GPIO.IN)
GPIO.setup(18, GPIO.OUT)
input_value = GPIO.input(17)
GPIO.output(18, GPIO.HIGH)



Estado do GPIO

cat /sys/class/gpio/gpio17/value

Relay Specs

The module provides three connections labeled COM, NC and NO. NC stands for "NORMALLY CLOSED". This means that when the relay has no signal (LOW or 0V from an Arduino), the connected circuit wil be active; conversely, if you apply 5V or pull the pin HIGH, it will turn the connected circuit off. NO stands for "NORMALLY OPEN", and functions in the opposite way; when you apply 5V the circuit turns on, and at 0V the circuit turns off. Relays can replace a manual switch. Remove the switch and connect its wires toCOM and NO. When the relay is activated the circuit is closed and current can flow to the device you are controlling. Module Description: this module features an 250v 10A mounted on a 2 module TinkerKit board, one standard TinkerKit 3pin connector, one transistor, a green LED that signals that the module is correctly powered and an yellow LED that indicates when the relay is active.

Relay 1: d2 verde echo 23 > /sys/class/gpio/export echo out > /sys/class/gpio/gpio23/direction echo 1 > /sys/class/gpio/gpio23/value echo 0 > /sys/class/gpio/gpio23/value

Relay 2 d7 laranja echo 23 > /sys/class/gpio/export echo out > /sys/class/gpio/gpio23/direction echo 1 > /sys/class/gpio/gpio23/value echo 0 > /sys/class/gpio/gpio23/value

Relay 3 d8 azul echo 24 > /sys/class/gpio/export echo out > /sys/class/gpio/gpio24/direction echo 1 > /sys/class/gpio/gpio24/value echo 0 > /sys/class/gpio/gpio24/value

Relay 4: d10 castanho 2 xLuzes do aquário echo 25 > /sys/class/gpio/export echo out > /sys/class/gpio/gpio25/direction echo 1 > /sys/class/gpio/gpio25/value

Projectos: Led: http://razzpisampler.oreilly.com/ch03.html


36 * * * * bash /home/pi/famon.sh                                                                                             │··················································
30 * * * * bash /home/pi/fasensor.sh                                                                                          │··················································
30 10 * * * python /home/pi/on1.py                                                                                            │··················································
30 11 * * * python /home/pi/off2.py                                                                                           │··················································
0 17 * * * python /home/pi/off1.py                                                                                            │··················································
0 18 * * * python /home/pi/on2.py                                                                                             │··················································
0 20 * * * python /home/pi/on1.py                                                                                             │··················································
59 23 * * * python /home/pi/off1.py                                                                                           │··················································
2 2 * * * python /home/pi/off1.py


gpio readall

apt-get install rpi.gpio

import RPi.GPIO as GPIO

nano /boot/config.txt nano /etc/modules


Infra Red: sudo apt-get install lirc

/etc/init.d/lirc stop

First test a remote control that you know to be working (example TV remote) to ensure that IR interface of the Raspberry Pi is working as expected.

On the terminal emulator

$mode2 -d /dev/lirc0

Point the working remote control at the Raspberry Pi

sudo service lirc stop $cd ~ Run the program irrecord $irrecord -d /dev/lirc0 my_remote_control.conf When the irrecord program wizard ask you to map key names, open another terminal emulator and list all the possible key names available in LIRC so that you can choose the best one that fits your requirement. The output of the command below is shown in the screenshot $irrecord --list-namespace Finally, the irrecord program will process your input and create a configuration file ~/my_remote_control.conf as shown in the third screenshot.

http://ozzmaker.com/how-to-control-the-gpio-on-a-raspberry-pi-with-an-ir-remote/ gcc -o irelay irelay.c -lwiringPi -llirc_client


sudo apt-get install v4l-utils

v4l2-ctl --list-devices

Fish Cam

  • Não consigo correr o script dentro de um sh, melhor meti-o o comando num cron.

Capture to OGV in High def:

ffmpeg -y -f mjpeg -re -t 5 -i http://fa:fresco@ -r 25 -b 18550k -vcodec libtheora /root/fishcam.ogv

Low res:

ffmpeg -y -f mjpeg -re -t 5 -i http://fa:fresco@ -an -r 15 -acodec vorbis -vcodec libtheora fishcam.ogv

Take a shot from video:

ffmpeg -i ./fishcam.ogv -f mjpeg -vf "select=eq(n\,0)" -q:v 3 fishot.jpg

Rpi script:

picamshot.sh (takes a 1 minute video at 12PM)

echo "1" > /sys/class/gpio/gpio23/value
sleep 60
avconv -y -f mjpeg -re -t 60 -i http://fa:fresco@ -an -r 15 -acodec vorbis -vcodec libtheora /root/fishcam.ogv

Server FA scripts:


ssh get file at 12:15PM

fishot.sh (takes a shot and archive one copy at 12:30)

avconv -y -i /home/futuragora/public_html/futurai/opensenses/pi/fishcam.ogv -f mjpeg -vf "select=eq(n\,0)" -q:v 3 /home/futuragora/public_html/futurai/opensenses/pi/fishot.jpg | cp /home/futuragora/public_html/futurai/opensenses/pi/fishot.jpg "/home/futuragora/public_html/futurai/opensenses/pi/fishots/fishot-`date +"%Y%m%d_%H%M%S"`.jpg"



First of all, some packages have to be installed:

sudo apt-get update

sudo apt-get install build-essential python-dev python-openssl git

Now the library for the sensors can be loaded. I use a pre-built Adafruit library that supports a variety of sensors:

git clone https://github.com/adafruit/Adafruit_Python_DHT.git && cd Adafruit_Python_DHT

sudo python setup.py install

This creates a Python library that we can easily integrate into our projects.

If everything went well, we can already read the temperature and humidity. The easiest way is to first use the demo files:

cd examples sudo ./AdafruitDHT.py 11 4

The first parameter (11) indicates which sensor was used (22 for the DHT22) and the second, to which GPIO it is connected (not the pin number, but the GPIO number). This produces an output like the following:

$ sudo ./AdafruitDHT.py 11 4
Temp=24.0*  Humidity=41.0%

./AdafruitDHT.py 11 4 | awk '$1 {print $2}' | awk '$1 {print $1}' RS="Humidity=" | awk '$1 {print $1}' RS="%"

./AdafruitDHT.py 11 4 | awk '$1 {print $1}' | awk '$1 {print $1}' RS="Temp=" | awk '$1 {print $1}' RS="*"

Attention: The sensors are only ready every two seconds. Be careful not to start a query every second.




http://www.instructables.com/id/Record-Infrared-Codes-of-Any-Remote-Control-Unit-f/ http://ozzmaker.com/wp-content/uploads/2013/10/IRwiring2.png?csspreview=true http://ozzmaker.com/how-to-control-the-gpio-on-a-raspberry-pi-with-an-ir-remote/ https://www.modmypi.com/blog/raspberry-pis-remotes-ir-receivers http://www.instructables.com/id/Add-Infrared-Interface-to-Your-Raspberry-Pi/ http://www.instructables.com/id/Install-and-Configure-Linux-Infrared-Remote-Contro/ http://www.instructables.com/id/Record-Infrared-Codes-of-Any-Remote-Control-Unit-f/


Easy answer. Setup /etc/resolv.conf how you want it.

Run Code: Select all

sudo chattr +i /etc/resolv.conf Then it will never be changed. If you need to edit it, change +i to -i